
This presentation is supplemental to the previous overview presentation and assumes that 

the audience has understood the basic ideas from that presentation.the audience has understood the basic ideas from that presentation.
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Recall the discussion of the building and use of the logical architecture associated with a 

partially translated Implementation Neutral Specification (INS) of a computation. The next partially translated Implementation Neutral Specification (INS) of a computation. The next 

section will illustrate how such an LA gets constructed.
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Recall the LA example from the overview presentation (illustrated by this Architecture 

Browser screen shot). How did this LA get built? The next (build) slide will animate the Browser screen shot). How did this LA get built? The next (build) slide will animate the 

building of an LA from a fairly abstract and conceptual perspective.
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This hidden slide is the starting slide for a simulation of the build slide shown at the end of 

this series. These hidden slides are provided to clarify the individual build actions for 

5

this series. These hidden slides are provided to clarify the individual build actions for 

readers of the pdf version of the Powerpoint presentation. 



This hidden slide simulates (for pdf file readers) two steps of the build slide at the end of 

this series. 
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This is a build slide. 17 mouse clicks will animate the processing of this AST showing:

•the creation of loop APC (constraints), 
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•the creation of loop APC (constraints), 
•the introduction of loop index names (e.g., i and j, and k and l), 
•the partial translation of the expression (e.g., b -> b[i,j]), 
•the creation of partitions associated with loop APCs (e.g., “(e1-c5)” ), 
•the propagation of the APCs over the AST, and 
•the merging of APCs.

Bookmarks for DSLGenICSRToolsDemoV4.dxl demo file. (NB: For the DSLGenICSRToolsDemoV4.dxl example, the analogical 
correspondences between the presentation example and the History Debugger example are: 

a corresponds to c, 
b corresponds to d, 
i corresponds to idx3, 
j corresponds to  idx4, 
s corresponds to  spart.
sp corresponds to  sppart.)

Bookmarks for DSLGenICSRToolsDemoV3.dxl demo--

[Format: (Bookmark name,  (history outline node title, history outline node index)) ].

((Creation of Loop2d1 for D Image)) (partitioningcompositeleaf (4 5)))
(((Creation of Loop2d2 for C Image))  (partitioningcompositeleaf (4 6)))
(((Creation edge1)) (makeapartition (4 8 4 4)))
(((Creation of Loop2d3 for 2nd occurrence of C Image))  (partitioningcompositeleaf (4 18)))
(((Creation of edge6)) (makeapartition (4 20 4 4)))
(((Loop2d4 = loop2d2 + loop2d3))  (partitioningfunctionalopsonpixelcomposites (4 46)))
(((Loop2d5 = loop2d1 + loop2d4))  (partitioningfunctionalopsonpixelcomposites (4 67)))
(((PartesttX results for neighborhood w.sppart-0-edge11))  (adtcomponentredirection (10 7)))
(((Conv Op for neighborhood spart-0-edge11))  (partrightlinearproduct (10 14 1)))
(((Row Method-Transform for neighborhood spart-0-edge11))  (adtcomponentredirection (10 14 2)))
(((Col Method-Transform for neighborhood spart-0-edge11))  (adtcomponentredirection (10 14 3)))
(((W Method-Transform for neighborhood spart-0-edge11))  (adtcomponentredirection (10 14 4)))
((((Final inline result for Conv op of neighborhood w.spart-0-edge11))  (dsoperatorredirection (10 14)))
((Partially evaluate Conv Expr for neighborhood spart-0-edge11)  (pe (11 7 1 2 3 3)))
((Square Root of (0 + 0), RHS of edge11 loop)  (partitioningsimplifyletbodies (11 8)))
(((Example synch decision; Idx7 -> idx3)) (sprefine22640 (5 5 2 1 1)))



The History Debugger is the key tool that the Domain Engineer uses to analyze and 

potentially debug a derivation history for some code generation.potentially debug a derivation history for some code generation.
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Rationalization of the existence of the History Debugger (HD). A key point is that the HD is 

not for the Application Programmer who operates with DSLGen™ as if it were just a really not for the Application Programmer who operates with DSLGen™ as if it were just a really 

smart “compiler.” The HD is designed for use by the Domain Engineer whose job is to 

improve and extend DSLGen™.
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Introduce the HD and describe the windows. The outline window (lower left) is a directory 

like view of the history tree where any node selected (i.e., some generator operation, like view of the history tree where any node selected (i.e., some generator operation, 

either atomic or a composition of many sub-operations) in the outline determines what is 

shown in the three other windows. The upper left window contains variable bindings 

associated with the operation (e.g., the bindings resulting from a pattern matching 

operation associated with a transformation). The upper right window shows the Abstract 

Syntax Tree (AST) focus before the operation started and the lower right shows the AST 

after the operation has completed. In many instances, the bindings, before and after 

windows are used to display trace information and those cases do not really reflect a true 

generator transformation. DSLGen™ has 30 or 40 trace flags that can be turned to debug in 

particular areas of the generator (e.g., the partial evaluator). So, the size of the history tree 

can vary quite a bit.

The instance of the history outline shown in this slide is the top level summarization of the 

generator’s operations for a particular case. At the top level, the outline items are mostly 

the names of generator’s phases (e.g., process scopes, process declarations, typeinfer, 

syntheticdesign, etc.). The last outline item reports runtime in seconds (e.g.,  75 seconds or 

so for examples like this one), the total number of nodes in the history tree (e.g., around 

3,000 for this scale of problem) and the number of actual transformations (e.g., around 

800).  (Speaker’s note: if running a live example, show how the bindings, before and after 

windows change by selecting some lower level nodes within one of the phases.)
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Describe the search dialog and the bookmarking dialog and explain why and how they are 

used. Why: finding specific operations or transformations is often like looking for a needle used. Why: finding specific operations or transformations is often like looking for a needle 

in a haystack. Search is a godsend in such cases. Bookmarks are great for debugging related 

but widely separated steps, as well as for use in presentations.

(Speaker’s note: if running a live example, select a bookmark like the point where one of 

the loop constraints is created or the point of inlining of the definition of W of a 

neighborhood for a live demonstration.)
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Describe the user interface for the HD and if live demo is running, bring up one or more 

convenient dialogs such as the Architecture Browser, which has been illustrated earlier. convenient dialogs such as the Architecture Browser, which has been illustrated earlier. 

Opening a DSLGen™ source file is probably too far into the weeds and would confuse more 

than inform.
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Look at the partial evaluation engine in the context of our specific examples and, more

specifically, see how the edge processing code gets inlined and simplified to what is seen in specifically, see how the edge processing code gets inlined and simplified to what is seen in 

the early examples shown in the overview presentation.
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How did this code get derived? 

We will derive the code for an edge example. The example will elide a some irrelevant 

complexities and do a bit of reordering of some steps to enhance the continuity of the 

overall process. Other than that, the example is quite faithful to the overall process.
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Recall the definitions from the Logical Architecture seen in the earlier presentation. The 

following definition inlining and simplification steps will employ Method-Transforms (MT-s)  following definition inlining and simplification steps will employ Method-Transforms (MT-s)  

that define w, row, col and other MT-s specialized for the two edge neighborhoods spart-0-

edge11 and sppart-0-edge11. All of this is in the  context of a 2D loop constraint 

(specifically, loop2D5)  that modifies a partially translated Problem Domain expression 

(e.g., {b [i,j]= [(a[i,j] ⊕⊕⊕⊕ spart-0-edge11[i,j])2 + (a[i,j] ⊕⊕⊕⊕ sppart-0-edge11[i,j])2]1/2} ).
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Two definitions from the LA that we have seen earlier will have a profoundly different effect 

on the resulting code for center computations and edge computations. Specifically, recall on the resulting code for center computations and edge computations. Specifically, recall 

the MT definitions for w (i.e., the Sobel weight function)  of the center partition 

neighborhood and one of the edge partition neighborhoods. The RHS-s of these two 

definitions will produce differing resultant code for the respective partitions. The center 

neighborhood will produce the largely unsimplified code for the general case (with only the 

loop ranges modified to eliminate the edges). However, the edge neighborhood definition 

for w will always result in 0, which will engender significant simplification of the edge 

pixel computations (as we saw earlier in the example code). And it is this edge case 

simplification that we will follow through in the following slides.
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So, let’s examine the refinement of one of the edge loops. We will follow this process 

through step by step and as we do, we will go to a concrete example of the actual step in through step by step and as we do, we will go to a concrete example of the actual step in 

the History Debugger. This will show the true forms on the AST, i.e., what a Domain 

Engineer debugging a derivation would see. Note, the concrete example we use is modestly 

more complex because of complexities in the real example that I have chosen to omit from 

the presentation example. Those complexities add nothing critical to the understanding of 

the process. The presentation example also omits dealing with the inner loop constraint 

over the neighborhood (i.e., the loop over p and q in the example). As the definitions are 

inlined in this example, the neighborhood loop (in the PL representation form) will pop into 

view at the appropriate point but the details of that constraint and its operation add no 

insights beyond those already provided by the operation of the loop constraint for the 

image (i.e., the loop over i and j).  One additional proviso is that the real example (to be 

shown in the History Debugger) is dealing with different names (e.g., c rather than a) but 

the operational structure and transformations are obviously analogous.

We will follow through the refinement of the BLUE text portions of the loop expression. But 

the refinement of the convolution expression in RED text, while we ignore it for simplicity, 

is closely analogous. 

So, as the first step, we need to inline the definition of the Partestx method transform

(which refines to the specific partitioning condition for this loop) and the definition of the 

convolution operator.
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The Partestx MT refines pretty directly to the concrete partitioning condition “(i==0)”. This step also rewrites the convolution definition in terms of IL 
abstractions of that definition. 
The IL abstractions of note for convolution are the definition of w of the neighborhood (which we have seen earlier in the overview presentation) and the The IL abstractions of note for convolution are the definition of w of the neighborhood (which we have seen earlier in the overview presentation) and the 
MT definitions of row and col, which map from neighborhood coordinates to image coordinates. This inlining of the convolution becomes the body of the 
neighborhood loop. The inlining of the neighborhood loop over p and q, though shown here to aid understanding of the context for the listener, is actually 
handled as a separate step. 

The next slide will show the inlining of w, row and col but first, let’s switch to a live instance of the History Debugger and see what the inlining steps look 
like in a real example. 

(Reader’s Note: If the presentation is not being presented live but just being read, the actions described below are simulated by the two following slides 
that show the History Debugger examining the two inline operations for the partitioning condition and the convolution. They are intended to provide a 
sense of what a live audience would see in the course of the following live demo steps.)

In the History Debugger using the image DSLGenICSRToolsDemoV4.dxl file, let’s look at a concrete analogical example:

The analogical correspondences between the presentation example and the History Debugger example are: 

a corresponds to c, 
b corresponds to d, 
i corresponds to idx3, 
j corresponds to  idx4, 
s corresponds to  spart.
sp corresponds to  sppart.

Note also: The real example is a RGB color image and therefore, introduces the added complexity of a loop over the RGB fields. Dsfieldop5 is the variable of 
that loop and it determines which color plane is being operated on. For the purposes of this example, we can just ignore the field operation because the 
rest is pretty much the same as a simpler grayscale image.

3. Physical Architecture: Inline Intermediate Language (Partestx ...) 
at bookmark (((PartesttX results for neighborhood w.sppart-0-edge11))  (adtcomponentredirection (10 7)))

a. Go to (adtcomponentredirection (10 7)) in the History Debugger
b. Show unrefined partitioning condition in the Before Window: (partestx sppart-0-edge11)
c. Show refined partitioning condition in the After Window:  (commasplice ((== idx3 0)))

4. Physical Architecture: Inline Intermediate Language (rightconvolutionop  ...)
at bookmark (((Conv Op for neighborhood spart-0-edge11))  (partrightlinearproduct (10 14 1)))

a. Go to (partrightlinearproduct (10 14 1)) 
b. Show unrefined convolution operator in the Before Window: 

(rightconvolutionop (dsfieldop5 (aref c idx3 idx4)) (aref sppart-0-edge11 P5 Q6))
c. Show refined convolution operator in the After Window:  (* (dsfieldop5 (aref c (row sppart-0-edge11 (aref c idx3 idx4) P5 Q6) 

(col sppart-0-edge11 (aref c idx3 idx4) P5 Q6)))
(w sppart-0-edge11 (aref c idx3 idx4) P5 Q6))
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History Debugger showing the inlining of the partitioning condition MT during the 

“formals” phase of the generator. This outline node (i.e., (adtcomponentredirection (10 7)) “formals” phase of the generator. This outline node (i.e., (adtcomponentredirection (10 7)) 

) is the summary of several sub-steps in the overall operation, the details of which are 

largely irrelevant to this level of discussion. Conceptually, this is a pretty straightforward 

inlining operation.
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This slide is the History Debugger showing the step where the convolution definition 

(internally called “rightconvolutionop”) is inlined during the “formals” generation phase. (internally called “rightconvolutionop”) is inlined during the “formals” generation phase. 

Notice that the history node (partrightlinearproduct (10 14 1)) comprises a number of sub-

steps that are doing a good deal of bookkeeping (e.g., creating declarations for newly 

generated C variable names and putting them into the correct scope). This level of detail is 

not relevant at this level of discussion and we shall ignore it. Fundamentally, this step is 

inlining the definition of the convolution operator, which is defined in terms of lower level 

intermediate language operators (i.e., lower level MT definitions). As we will see later in 

the example derivation, these lower level MT definitions will be drawn from that part of 

the Logical Architecture that is specialized for the edge11 partition and therefore, these 

edge11 specializations will cause the evolution of resultant code that is significantly 

different from the resultant code that would be produced for the center partition. 

The details of the summation loop code structure generation is handled elsewhere in the 

derivation. Hence, the Domain Engineer doesn’t see it at this step of the history tree. At 

this point, the Domain Engineer sees only the inlining of the convolution definition itself.

So, the next slide shows the recursive inlining of the lower level intermediate language 

definitions.
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Now, it is time to inline the definitions for w, row and col. These are conceptually pretty straightforward. Recall that the pixel upon 
which the neighborhood is centered will be at the image position a[0,j]. Row maps from neighborhood coordinates (i.e., “p”) to the 
coordinates of the image pixel corresponding to that neighborhood position (i.e., “(+ 0 (+ p -1))” where the image row coordinate “0” 
which the neighborhood is centered will be at the image position a[0,j]. Row maps from neighborhood coordinates (i.e., “p”) to the 
coordinates of the image pixel corresponding to that neighborhood position (i.e., “(+ 0 (+ p -1))” where the image row coordinate “0” 
arises because this is an edge pixel). Col does an analogous mapping for the column coordinates. Thus, the target image pixel will be at 
a[(+ 0 (+ p -1)) , (+ j (+q -1))]. And because the pixel in this example is an edge pixel, the (w ….) expression will inline to 0. 

(Nitpicking detail in the weeds: The partitioning condition “(i==0)” will constrain the range of p to be [1,2] (i.e., 1<=p<=2), here expressed 
using the C rather than Image Algebra indexing system (i.e., [0,2] rather than [-1,1] indexing system). That is, if p could be 0, then the 
index “i" would be -1 and would fall outside of the actual image. This constraint is irrelevant for this example because w is everywhere 0 
and thus, the summation will be 0 regardless. In a problem where w is non-zero (e.g., image averaging), the ranges of the summation 
loops will vary and correctly reflect this constraint. How this happens is too far in the weeds for this example. However, the short answer 
is that domain knowledge (e.g., “edge-ness”) triggers the injection of specialized definitions for row and col that incorporate the proper 
constraints. But because these details are largely irrelevant for this example, I have omitted them. This note is here in case someone 
catches the problem implied by the simplification.)

Now, let’s switch to the History Debugger (HD) and see an actual example of these inlining steps. (Reader’s note: Even though there are 
no actual screen shots of the History Debugger for these cases, the Before and After Window values are shown in the notes below.
And though you do not get to see the actual Bindings and Outline windows values of the HD, they are not highly relevant to this level 
of discussion. It should be clear what it going on here from the notes below.) 

5. Physical Architecture: Inline Intermediate Language (w  ...)
at bookmark  (((W Method-Transform for neighborhood spart-0-edge11))  (adtcomponentredirection (10 14 4)))

a. Go to (adtcomponentredirection (10 14 4))  in the History Debugger
b. Show unrefined intermediate language expression of w in the Before Window: 

(w sppart-0-edge11 (aref c idx3 idx4) P5 Q6)
c. Show refined intermediate language expression w in the After Window:  0

6. Physical Architecture: Inline Intermediate Language (row  ...)
at bookmark (((Row Method-Transform for neighborhood spart-0-edge11))  (adtcomponentredirection (10 14 2)))

a. Go to (adtcomponentredirection (10 14 2)) in the History Debugger
b. Show unrefined intermediate language expression of row in the Before Window: 

(row sppart-0-edge11 (aref c idx3 idx4) P5 Q6)
c. Show refined intermediate language expression row in the After Window:  (+ idx3 (+ P5 -1))

7. Physical Architecture: Inline Intermediate Language (col  ...)
at bookmark (((Col Method-Transform for neighborhood spart-0-edge11))  (adtcomponentredirection (10 14 3)))

a. Go to (adtcomponentredirection (10 14 3)) in the History Debugger
b. Show unrefined intermediate language expression of col in the Before Window: 

(col sppart-0-edge11 (aref c idx3 idx4) P5 Q6)
c. Show refined intermediate language expression col in the After Window:  (+ idx4 (+ Q6 -1))

28



To show simplification of i to 0 and the pixel value expression (* … 0) to 0, go to 

“simplifyloops” phase in the History Debugger. (Reader’s note: The partial evaluation of “simplifyloops” phase in the History Debugger. (Reader’s note: The partial evaluation of 

this expression is so blindingly obvious that not actually seeing the step in the HD is not a 

great sacrifice.)

8. Physical Architecture: Simplifyforallloops-pe (pe ...)

at bookmark ((Partially evaluate Conv Expr for neighborhood spart-0-edge11)  (pe (11 7 1 

2 3 3)))

a. Go to step (pe (11 7 1 2 3 3)) in the History Debugger

b. Show un-partially evaluated expression in the Before Window: 

(* (dsfieldop5 (aref c (+ idx3 (+ P5 -1)) (+ idx4 (+ Q6 -1)))) 0)

c. Show partially evaluated expression in the After Window:  0
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To show simplification of (0 + 0) to 0, go to simplifyallloops phase. (Reader’s note: Again, 

this is blindingly obvious. The actual mechanics of this simplification in a real example this is blindingly obvious. The actual mechanics of this simplification in a real example 

are a bit less straightforward than presented here but while the variation may be mildly 

amusing, it provides no deep insights into the generation process. So, again. Beyond the 

empirical evidence of an actual implementation, nothing is lost by not seeing the HD 

artifacts.)

9. Physical Architecture: The step that partially evaluates the expression – (isqrt 0**2 + 0**2), 

which is the RHS of an assignment (:=) statement, 

at bookmark  ((Square Root of (0 + 0), RHS of edge11 loop)  

(partitioningsimplifyletbodies (11 8)))

a. Go to step (partitioningsimplifyletbodies (11 8))

i. (pe (11 8 1 2 2 3))  - PE of (0 + 0) 

ii. (pe (11 8 1 2 3 2 2))  - PE of (isqrt (+ (expr 0 2) (expr 0 2))

b. Un-partially evaluated expr in assigment statement in the Before Window:  

…. (:= (dsfieldop2 (aref d idx3 idx4)) (isqrt  0**2 + 0**2)) 

c. Partially evaluated result in assigment statementin the After Window:         

…. (:= (dsfieldop2 (aref d idx3 idx4))  0)
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In the generator phase that performs most of the loop simplification in this example (which 
appropriately enough is called the “SimplifyLoops” phase), the loop form is reduced from a loop appropriately enough is called the “SimplifyLoops” phase), the loop form is reduced from a loop 
over “i and j” to a loop over just “j”. One assertion in the partitioning condition constraint list (i.e., 
the “(i==0)” assertion) causes the loop over “i” to evaporate and all instances of “i“ in the body to 
be replaced with “0”. (Recall that this concrete form “(i==0)” was refined earlier from the generic 
Intermediate Language form “Partestx(S-Edge1)”.) 

We can view this step in an actual example by switching to a running instance of the History 
Debugger (if an instance is running during this presentation).

Goto: (partitioningsimplifyforallloops (11 11)) for full transformation from (forall (idx3 idx4) ….) to 
(forall (idx4) ….)  when the PC is “(idx3 == 0)”,
at bookmark (((Loop over Idx3 evaporates when (Idx3 == 0))  (partitioningsimplifyforallloops (11 

11))

a. Go to history node (partitioningsimplifyforallloops (11 11))
b. Generic loop for RGB assignment statements in the Before window:     

(_forall (idx3 idx4) …RGB assignments here …)
c. Refined loop spec for RGB assignment statements in the After window: 

(_forall (idx4) …RGB assignments here …)

Click for next build of the slide:
To make it clear where this process will eventually end up,  this slide shows a C-like textual form for 
the eventual result. But to be clear, the textual form of the C code is produced much later in the 
generation process and long after the loop evaporation step. Text based code generation, which 
adds the surface C syntax to the AST, is the very last phase in the overall generation process. 

31



The overall simplification process results in the form that we saw earlier in the example C 

code.code.
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(Optionally, you may want to skip this slide and the next one.)

We have all ready covered much of the introductory ground for the History Debugger in 

previous slides.  This slide is here largely to provide a context for the use of the bookmark 

dialog in the next slide, which gets to the partial evaluation step that reduces the square 

root expression to zero for the edge partitions.

In a live demo, it may be of some interest to select the runtime node  and show the 

summary of the overall generation process. It shows the computation time (typically for 

this example, around 75 seconds), the size of the history tree (typically around 2700-2800 

nodes, depending on how many extra traces are turned on) and the number of true 

transformations that trigger (typically for this example, around 800 transformations ).
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History Debugger bookmarks used in the previous slides deriving the Physical architecture 

via inlining and Partial Evaluation. via inlining and Partial Evaluation. 

(Reader’s note: This slide is here largely to provide a link to the point in the history where 

the fully inlined expression is handed to the partial evaluator to see if it can be 

simplified, which in the case of the edge computations, it can. In a presentation in which 

a live version of the DSLGen™ is running, the speaker has the option of using this 

bookmark to go directly to the point in the history tree where this simplification happens 

for the edge11 context. It should be pretty obvious that the inlined arithmetic expression 

in the previous slide will simplify to zero. )
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Recall the earlier build/animation slide that illustrated translation of domain oriented 

expressions on images into domain oriented expressions on pixels. Lots of things got expressions on images into domain oriented expressions on pixels. Lots of things got 

created during this process: names of image loop(s) indexes, names of neighborhood 

loop(s) indexes, loop constraints, partition constraints, etc. Recall that several different 

pairs of index names were created to process image b, image a, and the two convolution 

expressions of image a. As the process proceeded, it was step by step determined that only 

one set (of indexes) was needed and the other indexes were abandoned. Unfortunately, 

the abandon index names were sprinkled over the domain expression and elsewhere. So, 

parts of the AST were out of synch with other parts of the AST after that phase of 

translation finished. How does this get resolved by the generator?

Answer: Whenever a set (of indexes) is abandoned, a transformation is dynamically 

generated that is enabled to fire during a later synchronization phase (the“specrefine” 

phase). When the logical architecture building phase is complete, DSLGen™ walks over the 

AST during a specrefine phase allowing these “fix up” transformations to synchronize the  

overall design. (Speaker note: if a live instance of DSLGen™ is running, there is a 

bookmark for one of the fix ups. Although, the idea is intuitive enough that it is probably 

a waste of time unless the audience really wants to see under the “hood”.)
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The Pattern Matching engine is one of the primary facilities of the generator and is used 

widely in transformations, in most Lisp routines in the generator, in the code generator, in widely in transformations, in most Lisp routines in the generator, in the code generator, in 

the type inference engine and in the logical inference engine. Let’s take a look at this 

facility.

37



(Speaker’s note: This is a build slide. Transitions noted in bold.)

Click. Click. 

One of main uses of pattern language is to specify the LHS of transformations. It is also used in almost every major Lisp function within 
DSLGen™. Some of the LHS of a transformation is written by the domain engineer and some of it is generated automatically by DSLGen™ 
for its own internal design purposes (e.g., a transformation’s LHS creates bindings for transformation name, home object, phase, the 
object defining the details of the transformation, etc. as well as introducing some trace machinery). The pattern language is built on top 
of LISP using Lisp’s character macro feature to “compile” pattern language operators into Lisp structures (e.g., lambda trees).

Click.

The pattern language is a so-called “reverse quoting” language, which means that anything without some special syntax is a literal. Two 
syntactic enhancements identify pattern language elements – a question mark (?) identifies variables that will be bound to data (e.g., 
literals or expressions), and a dollar sign ($) identifies pattern operators such as $(pand ?x z), which requires that the next data item be 
bound to the variable ?x AND that data item must be the literal item “z”. A further operator example is the Por operator,  which allows a 
list of alternative patterns, one of which must match for the Por match to succeed.

Click.

The pattern matcher uses a control structure based on “continuations”, which allows full backtracking. That is, if a pattern match is 
succeeding and the next sub-pattern match fails on the next data item, the matcher undoes all successful operations back to the last 
choice point (i.e., the place where there is some alternative sub-pattern that has not been tried but potentially might succeed) and the 
matching operation is restarted at that choice point with all bindings that were created as a result of successful matches of the prefix 
data matched up to the choice point. Thus, these matches are “exhaustive” and can only fully fail if there is no possible pathway through 
the pattern that matches the data the matcher is supposed to match. The data being matched in the DSLGen™ ‘s case is often an
Abstract Syntax Tree (AST) or an AST subtree.

Click.

The pattern language has several dozen operators but it is extensible. The Domain Engineer can create new pattern operators using Lisp 
macros provided in DSLGen™.

Click.

The basic data structures are a “lambda tree” that is the internal form of the pattern and a failure stack that contains continuations for 
choice points that have not yet been explored. There is a “decompiler” function to express the lambda tree in the form that a pattern 
writer would use to express the pattern. This decompiler facility is used by a number of tools and inspectors that a Domain Engineer 
needs to examine internal structures while extending or debugging an addition to DSLGen™.

Click.

The pattern matcher is “Turing complete” meaning that it can compute anything a Turing machine can compute. That is, any 
computation that can be expressed in a programming language can be expressed in the pattern language.
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This slide just shows a selection of pattern operators. In addition to the expected operators 

(e.g., or, and, not and none), there are operators that match an indefinite length list of 

39

(e.g., or, and, not and none), there are operators that match an indefinite length list of 

items (e.g., remain, spanto, spanthru, etc.). There are operators to add user control or 

management to the match (e.g., bindvar and bindconst to preset certain bindings for the 

rest of the search), mark and cut to avoid searching paths that are known to be failures, fail 

and succeed to use knowledge gleaned from the earlier part of the search, various forms of 

recursive searches (e.g., pmatch, recurse, recurse using this rule, etc.), scoping operators 

for ?vbls (e.g., plet), various forms for calling Lisp functions (e.g., plisp, papply, ptest), and 

operators for matching the value of CLOS slots (e.g., psuch).
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The following slides provide a little closer look at DSLGen™ transformations.
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There are two basic kinds of transformations: Process and Method-Transform.

The DSLGen™ generation process is defined by sets of process transformations defined for each 

declared phase in the generation process. Each such transform is stored as a CLOS object whose 

name is the triple  TransformName . HomeObject . EnablingPhase and it lives on the CLOS type 

object named HomeObject. Most process transforms have preroutines (conventionally named as 

the transform name prefixed by “enable,” although any Lisp symbol is acceptable). The preroutines 

do bookkeeping chores (e.g., inventing internal names and creating new generator objects) and 

sometimes extend the bindings list produced by the LHS pattern match.

Method transforms are a specialized version of transforms that are specified like and behave like 

OO methods. Internally, they are exactly like a process transformation. We have already shown 

several examples of MTs and described their function at some length. Their LHS pattern is 

manufactured from MethodName, ObjectName and  RemainderOfPattern specification. Their RHS is 

the body of the MT definition. They rarely need pre or post routines but they are optionally 

available. MTs are stored as a CLOS object whose name is the triple  TransformName . HomeObject

. Formals and they live on the CLOS type object named HomeObject. The phase for which they are 

enabled is implied to be the phase “Formals” but it is optionally possible to specify some other 

phase name. However, that is very rarely used.

There are two Method-transform formats accepted. The Defcomponents form is the old format and 

may possibly be phased out. The newer format is the DefMT format. The minor differences are not 

relevant at this level of discussion.
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We have seen both of these example transforms previously.

Click for build action,  which shows the definition of LeafOperator.      Explain shared 

pattern subparts (which uses Lisp’s “#.” syntax). They are widely used to build complex 

patterns from simpler pieces.
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The selected transform (i.e., partitioningcompositeleaf) is the transform that is doing the 

first transformation on the image “d”. It introduces indexing variables and loop constraints first transformation on the image “d”. It introduces indexing variables and loop constraints 

for the loop over image (i.e., loop2d1) and loop over RGB fields (i.e., loop4fields1). 

Channel1 is the temporary variable introduced to index the fields.

(Speaker’s note: This is bookmarked in the live example but using the slides is more time 

efficient.)
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This slide is here because this instance shows the specific transformation (i.e.,

“partitioningcompositeleaf”) that was selected in the previous slide. The Domain Engineer “partitioningcompositeleaf”) that was selected in the previous slide. The Domain Engineer 

(apparently) has double clicked the selected outline item (i.e., (partitioningcompositeleaf (4 

6)) ) in the History Debugger instance shown in the previous slide and thereby produced 

this dialog instance. This provides the opportunity to further characterize the behavior of 

preroutines by noting that the values for ?newleaf and ?newtaglist are constructed by the 

preroutine of this transformation using parts and pieces that were found during the LHS 

match. They are added to the binding list upon return from the preroutine. 
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Redundant. Skip.
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Talk about the type hierarchy and how transformation inheritance works. Discuss how this 

serves specialization of component definitions (i.e., MT-s). Mention that type inference serves specialization of component definitions (i.e., MT-s). Mention that type inference 

rules (although distinct from true transformations) use the same kind of inheritance.

For in depth talks (e.g., a Domain Engineering class), the speaker may want to show the 

Lisp type tree, if there is enough time (and you are running a live example) just to provide a 

little context enrichment. Show some transforms relevant to specific types and (perhaps) 

inspect a raw transform object for concrete grounding. However, for general information 

talks, such details are best avoided.
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The type inference system is rule based. Let’s look at some examples.
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Explain format. Note that defopinference and defMethodInference are macros that compile 

into patterns. Mention the indefinite length pattern builders oneormore and zeroormore. into patterns. Mention the indefinite length pattern builders oneormore and zeroormore. 

Illustrate the various forms of specifying the return type -- integer position, explicit type 

name, “last” for last type matched and others.
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Self explanatory.
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Old example for a different computation.
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